New examples of torsion-free non-unique product groups
نویسندگان
چکیده
منابع مشابه
Examples of non-quasicommutative semigroups decomposed into unions of groups
Decomposability of an algebraic structure into the union of its sub-structures goes back to G. Scorza's Theorem of 1926 for groups. An analogue of this theorem for rings has been recently studied by A. Lucchini in 2012. On the study of this problem for non-group semigroups, the first attempt is due to Clifford's work of 1961 for the regular semigroups. Since then, N.P. Mukherjee in 1972 studied...
متن کاملGaussian Groups Are Torsion Free
Assume that G is a group of fractions of a cancellative monoid where lower common multiples exist and divisibility has no infinite descending chain. Then G is torsion free. The result applies in particular to all finite Coxeter type Artin groups. Finding an elementary proof for the fact that Artin’s braid groups are torsion free has been reported to be a longstanding open question [9]. The exis...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولTorsion in Profinite Completions of Torsion-free Groups
LET G be a residually-finite torsion-free group. Is Gthe profinite completion of G-torsion free? This question was asked in [CKL] where it was shown that if G is a finitely generated metabelian-by-finite group then indeed G is torsion free. On the other hand Evans [E] showed that if G is not finitely generated then it is possible that G has torsion. His example is also metabelian. In this note ...
متن کاملOn Endomorphisms of torsion-Free hyperbolic Groups
Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set S. Let g1, . . . , gn and g1∗, . . . , gn∗ be elements of H such that gr∗ is conjugate to gr for each r = 1, . . . , n. There is a uniform conjugator if and only if W (g1∗, . . . , gn∗) is conjugate to W (g1, . . . , gn) for every word W in n variables and length up to a computable constant depending only on δ, ♯...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Group Theory
سال: 2014
ISSN: 1433-5883,1435-4446
DOI: 10.1515/jgt-2013-0051